A Graphical Diagnostic for Identifying Influential Model Choices in Bayesian Hierarchical Models

نویسندگان

  • IDA SCHEEL
  • JONATHAN C. ROUGIER
چکیده

Real-world phenomena are frequently modelled by Bayesian hierarchical models. The building-blocks in such models are the distribution of each variable conditional on parent and/or neighbour variables in the graph. The specifications of centre and spread of these conditional distributions may be well motivated, whereas the tail specifications are often left to convenience. However, the posterior distribution of a parameter may depend strongly on such arbitrary tail specifications. This is not easily detected in complex models. In this article, we propose a graphical diagnostic, the Local critique plot, which detects such influential statistical modelling choices at the node level. It identifies the properties of the information coming from the parents and neighbours (the local prior) and from the children and co-parents (the lifted likelihood) that are influential on the posterior distribution, and examines local conflict between these distinct information sources. The Local critique plot can be derived for all parameters in a chain graph model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying influential model choices in Bayesian hierarchical models

Real-world phenomena are frequently modelled by Bayesian hierarchical models. The buildingblocks in such models are the distribution of each variable conditional on parent and/or neighbour variables in the graph. The specifications of centre and spread of these conditional distributions may be well-motivated, while the tail specifications are often left to convenience. However, the posterior di...

متن کامل

Analysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran

Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...

متن کامل

Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions

The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...

متن کامل

Minimizing Relative Entropy in Hierarchical Predictive Coding

The recent Hierarchical Predictive Coding theory is a very influential theory in neuroscience that postulates that the brain continuously makes (Bayesian) predictions about sensory inputs using a generative model. The Bayesian inferences (making predictions about sensory states, estimating errors between prediction and observation, and lowering the prediction error by revising hypotheses) are a...

متن کامل

Bayesian change point estimation in Poisson-based control charts

Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011